Article 5420

Title of the article



Afonin Aleksey Alekseevich, Doctor of agricultural sciences, professor, sub-department of biology, Bryansk State University named after academician I. G. Petrovsky (14 Bezhitskaya street, Bryansk, Russia), E-mail: 

Index UDK

582.623.2 + 57.034 




Background. Basket willow – Salix viminalis – a highly productive type of willows that is used to create raw material plantations. The necessity of studying the intraclonal variability of seasonal dynamics of daily shoots increment is justified. The purpose of the research is to identify the possible influence of excessive atmospheric humidification (such as periodic cloudbursts) on the dynamics of S. viminalis shoot development.
Materials and methods. The object of the research is a model inbred-clonal population of S. viminalis. The origin of the founders is an autochthonous population of S. viminalis in the Bryansk forest area. The materials are increasing annual shoots of one-year saplings from cuttings. To obtain and process the initial data, a set of methods of experimental botany, chronobiology, and analysis of time series were used.
Results. On loamy gray forest soils on the background of excessive atmospheric humidification, the annual growth of shoots of experimental clones was 130–200 cm with an average daily growth of 1,4–1,5 cm/day and a maximum growth of up to 3,1–3,3 cm/day. The seasonal trend of daily growth was characterized by negative dynamics. The cyclical nature of the seasonal dynamics of the daily increase with an interval between peaks of about 20 days was revealed. The established cyclicity is related to the periodicity of torrential rain. Intraclonal polyvariance of shoot morphogenesis and intraclonal discreteness of shoot development trajectories were revealed.
Conclusions. Under the experimental conditions, the studied clones of S. viminalis showed a fairly high productivity along the length of the shoots. The dynamics of daily growth is determined by the interaction of seasonal trends and cyclical fluctuations. The frequency of torrential rain has a modulating effect on the cyclicity of daily increment. The results are recommended to be taken into account when designing and creating raw plantations of basket willow to obtain consistently high yields of biomass. 

Key words

basket willow, Salix viminalis, excessive atmospheric humidification, periodicity of torrential rain, daily growth of shoots, seasonal dynamics of growth, discreteness of development, polyvariety of morphogenesis 


 Download PDF


1. Wu J., Nyman T., Wang D.-C., Argus G. W., Yang Y.-P., Chen J.-H. BMC Evolutionary Biology. 2015, vol. 15, no. 31. DOI 10.1186/s12862-015-0311-7.
2. Fogelqvist J., Verkhozina A. V., Katyshev A. I. et al. BMC Evolutionary Biology. 2015, vol. 15 (1), no. 193. DOI 10.1186/s12862-015-0461-7.
3. Berlin S., Trybush S. O., Fogelqvist J. et al. Tree Genetics and Genomes. 2014, vol. 10 (6), pp. 1595–1610. DOI 10.1007/s11295-014-0782-5.
4. Kulagin A. Yu. Ekologiya [Ecology]. 1982, no. 4, pp. 51–55. [In Russian]
5. Fuchylo Ya. D., Afonin A. A., Sbytna M. V. Plant Varieties Studying and Protection. 2016, no. 4 (33), pp. 18–25. DOI 10.21498/2518-1017.4(33).2016.88607.
6. Berlin S., Lagercrantz U., von Arnold S., Öst T., Rönnberg-Wästljung A.-C. BMC Genomics. 2010, vol. 11 (1), no. 129. DOI 10.1186/1471-2164-11-129.
7. Fredette C., Labrecque M., Comeau Y., Brisson J. Journal of Environmental Management. 2019, vol. 246, pp. 526–537. DOI 10.1016/j.jenvman.2019.06.010.
8. Ambroise V., Legay S., Guerriero G., Hausman J.-F., Cuypers A., Sergeant K. International Journal of Molecular Sciences. 2019, vol. 20, no. 4210.
9. Kern E. E. Iva, ee znachenie, razvedenie i upotreblenie [Willow, its meaning, breeding and use]. Petrograd: Tip. Ministerstva putey soobshcheniya, 1915, 132 p. [In Russian]
10. Hallingbäck H., Fogelqvist J., Powers S. et al. Global Change Biology Bioenergy. 2015, vol. 8 (3), pp. 670–685. DOI 10.1111/gcbb.12280.
11. Stolarski M. J., Niksa D., Krzyżaniak M., Tworkowski J., Szczukowski S. Renewable and Sustainable Energy Reviews. 2019, vol. 101, pp. 461–475. DOI 10.1016/j.rser. 2018.11.034.
12. Welc M., Lundkvist A., Verwijst T. BioEnergy Research. 2017, vol. 10, pp. 1094–1104. DOI 10.1007/s12155-017-9871-2.
13. Berlin S., Hallingbäck H. R., Beyer F., Nordh N.-E., Weih M., Rönnberg-Wästljung A.-C. Annals of Botany. 2017, vol. 120 (1), pp. 87–100. DOI 10.1093/aob/mcx029.
14. McIvor I., Desrochers V. Forests. 2019, vol. 10, no. 517. DOI 10.3390/f10060517.
15. Fuchilo Ya. D., Sbytna M. V., Zelinskiy B. V. Plant Varieties Studying and Protection. 2018, vol. 14, no. 3, pp. 323–327. DOI 10.21498/2518-1017.14.3.2018.145310.
16. Fabio E. S., Leary C. J., Smart L. B. Trees. 2019, vol. 33 (4), pp. 1015–1026. DOI 10.1007/s00468-019-01835-4.
17. Doffo G. N., Monteoliva S. E., Rodríguez M. E., Luquez V. M. C. Canadian Journal of Forest Research. 2017, vol. 47, pp. 174–182. DOI 10.1139/cjfr-2016-0202.
18. Afonin A. A. Vestnik Nizhnevartovskogo gosudarstvennogo universiteta [Bulletin of Nizhnevartovsk State University]. 2019, no. 2, pp. 43–50. DOI 10.36906/2311-4444/19-2/06. [In Russian]
19. Pogoda i klimat. Klimaticheskiy monitor [Weather and climate. Climate monitor]. Available at: (accessed Sept. 10, 2020). [In Russian]
20. Afonin A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Estestvennye nauki [University proceedings. Volga region. Natural sciences]. 2019, no. 4 (28), pp. 26–34. DOI 10.21685/2307-9150-2019-4-3. [In Russian]
21. Krenke N. P. Teoriya tsiklicheskogo stareniya i omolozheniya rasteniy i prakticheskoe ee primenenie [The theory of cyclic aging and rejuvenation of plants and its practical application]. Moscow: Sel'khozgiz, 1940, 135 p. [In Russian]
22. Serebryakov I. G. Botanicheskiy zhurnal [Botanical journal]. 1966, vol. 51, no. 7, pp. 923–938. [In Russian] 


Дата создания: 17.02.2021 10:23
Дата обновления: 25.02.2021 14:32